▲ MESSAGE FROM AMBROSE **▲**

This review sheet (a.k.a. a "cheat sheet") follows the order of topics in the *ACTEX Study Manual* for *Exam PA* and provides a "helicopter" view of the entire PA exam syllabus. As you know, the focus of PA is on conceptual understanding and written communication . To write well and score high, there are quite a lot of things you have to memorize as part of your exam prep, and this cheat sheet collects, I believe, the most important items all in one place for your convenience. Although no substitute for a thorough study of the manual , this cheat sheet should be a valuable aid to enhance retention and memorization. When I took PA in December 2019, I used a preliminary version of this cheat sheet and found it quite useful. (It was only 7 pages long back then!) Please feel free to refine it and put in additional facts and tips that you think are valuable.

GOOD LUCK

1.1 Problem Definition

• Three main categories of predictive modeling problems:

(More than one category can apply in a given business problem.)

Category	Focus	Aim
Descriptive	What happened in the <u>past</u>	To "describe" or explain observed trends by identifying <u>relationships</u> between variables
Predictive	What will happen in the <u>future</u>	To make accurate "predictions"
Prescriptive	The impacts of different "prescribed" decisions	To answer the "what if?" and "what is the best course of action" questions

• Characteristics of predictive modeling problems:

▷ (Issue) There is a clearly identified and defined business issue to be addressed.

Exam PA Review Sheet (Last updated 01/17/2025)

ACTEX Learning

- *(Questions)* The issue can be addressed with a few well-defined questions. **②**
- \triangleright (Data) Good and useful data is available for answering the questions above.
- > (Impact) The predictions will likely drive actions or increase understanding.
- ▷ (Better solution) Predictive analytics likely produces a solution better than any existing approach.
- > (Update) We can continue to monitor and update the models when new data becomes available.

• How to produce a meaningful problem definition?

> General strategy: Get to the root cause of the business issue and make it specific enough to be solvable.

- \triangleright Specific strategies:
 - \Box (Hypotheses) Use prior knowledge of the business problem to ask questions **3** and develop testable hypotheses.
 - \square (KPIs) Select appropriate key performance indicators for assessing the outcome. Desirable qualities of a KPI:
 - 1 Align with the overall business strategy of the client.
 - ② Be easily <u>measurable</u> from data and provide an objective, quantitative basis to measure success.

• Constraints to face:

- \triangleright The availability of easily accessible and high quality data
- ▷ Implementation issues, e.g.:
 - ☐ The presence of necessary IT infrastructure and technology to fit complex models efficiently
 - \square Cost and effort required to maintain the selected model

1.2 Data Collection and Validation

Data design

- Relevance: Need to ensure that the data is <u>unbiased</u>, i.e., <u>representative</u> of the environment where the model will operate.
 - \triangleright Population: Important for the data source to be a good <u>proxy</u> of the true population of interest.
 - *Time frame:* Choose the time period that best reflects the business environment of interest.
 - In general, recent history is better than distant history.
- Sampling: The process of taking a subset of observations from the data source to generate the dataset

- ▶ *Random sampling:* "Randomly" draw observations from the underlying population without replacement. Each record is equally likely to be sampled.
- ➤ **Stratified sampling:** Divide the underlying population into a no. of non-overlapping "<u>strata</u>" (w.r.t. target or predictors) non-randomly, then randomly sample a set no. of observations from each stratum ⇒ get a more representative sample.
 - A special case—systematic sampling: Draw observations according to a set pattern; no random mechanism controlling which observations are sampled.
- Granularity: Refers to how <u>precisely</u> a variable is measured, i.e., level of <u>detail</u> for the information contained by the variable. Example: Month is more granular than quarter.

Data quality issues

- Reasonableness: Data values should be reasonable (make sense) in the context of the business problem, e.g., variables such as age, time, and income \$\$ should be non-negative.
- Consistency: Data records should be inputted consistently on the same basis and rules, e.g., same measurement unit for numeric variables, same coding scheme for categorical variables.
- Sufficient documentation: Examples of useful elements:
 - ➤ A description of the dataset overall, including the data source
 - \triangleright A <u>data dictionary</u>, with a clear description of each variable (name, definition, and format)
 - ▷ Notes about past updates or other irregularities of the data
 - > A statement of accountability for the correctness of the data
 - $\,\triangleright\,$ A description of the governance processes used to manage the data

2

ACTEX Learning

Exam PA Review Sheet (Last updated 01/17/2025)

Other data issues

• Structured vs. unstructured data:

	Structured Data	Unstructured Data
Definition	Data that fit into a tabular arrangement	Data that do not, e.g., text, image, audio
Pros	Easier to manipulate	More flexible
Cons	Cannot represent information that does not naturally fit into a tabular arrangement	Harder to access and have to be carefully pre-processed

• Personally identifiable information (PII): Information that can be used to trace an individual's identity, e.g., name, SSN, address, photographs , and biometric records

How to handle PII?

- > Anonymization: Anonymize or de-identify the data to remove the PII.
- Data security: Ensure that the data receives sufficient protection, e.g., encryption, access/transfer restrictions.
- ➤ Terms of use: Be well aware of the terms and conditions, and the privacy policy related to the collection and use of data.

• Variables with legal/ethical concerns:

> Sensitive variables: Differential treatment based on sensitive variables may lead to unfair <u>discrimination</u> and raise <u>equity</u> concerns.

Examples: Race, ethnicity, gender, age, income \$, disability status \clubsuit , or other prohibited classes \lozenge

\triangleright	Proxy variables:	Variables that are not prohibited variable	е
	themselves, but	are closely related to (hence serve as	
	"proxy" of) proh	ibited variables.	

Examples:

- □ Occupation (possibly a proxy of gender)
- \Box Geographical location (possibly a proxy of age, income)

Exam PA Review Sheet (Last updated 01/17/2025)

• Target leakage:

- Definition: When predictors in a model "leak" information about the target variable that would <u>not be available</u> when the model is deployed in practice
- ➤ Key to detecting target leakage—Timing: These variables are observed at the same time as or after the target variable. •
- ▷ Problem with this issue: These variables cannot serve as predictors in practice and would lead to artificially good model performance if mistakenly included.
- ➤ An extreme and commonly tested form of target leakage: When the target variable itself is included as a predictor or is used to develop new features, e.g., PCs, cluster groups.

1.3 Exploratory Data Analysis (EDA)

• Aims:

- ▷ (Data validation) Clean and validate the data for inappropriate and anomalous entries (outliers)
 - \Rightarrow make the data ready for analysis.
- ▷ (Generating insights for modeling) Understand the characteristics of variables (on marginal + joint bases)
 - ⇒ identify potentially useful predictors, generate new features, decide which type of model (e.g., GLMs vs. decision trees) is more suitable, etc.

- Variable type: Determines the type of exploratory tools to use. Univariate exploration tools: Look at one variable at a time.
 - ➤ Numeric (a.k.a. quantitative): Take the form of numbers with an associated range.
 - \square Discrete: Restricted to only certain numeric values, e.g., non-negative integers.
 - \square Continuous: Can assume any value within the range.
 - ▷ Categorical (a.k.a. qualitative, factor): Take predefined values in a countable collection of "categories," a.k.a. levels, classes.
 - \square Nominal: Levels have no natural order.
 - \square Ordinal: Levels have a natural order.

C----- C+-+:-+:--

(**Note:** Can't say one level is higher than another <u>by how</u> much, unlike numeric variables. **(A)**

• Two types of general tools, with relative pros and cons:

•	Univariate exploration tools	: LOOK	at one	variabie	at a

Type	Statistics	Plots	Observations
Numeric	Mean, median, variance,	Histograms, boxplots	Shape of distribution (e.g., mode, any skew)?
	min., max.		
Categorical	Class frequencies	Bar charts	Which levels are most common?
			\triangleright (For binary Y)
			Presence of
			imbalance

Exam PA Review Sheet (Last updated 01/17/2025)

• Bivariate exploration tools: Look at pairs of variables.

	Summary Statistics	Graphical Displays
Pros •	Precise and objectiveEasily comparable across variables.	Can gain a quick visual impression of a variable's distribution.
		Can reveal information not easily captured by summary statistics
Cons 🖨	certain aspect of a variable's	➢ Information provided is not as precise as summary statistics.
	distribution. ➤ Some statistics (e.g.,	
	mean) can be easily distorted by outliers.	➢ Poorly designed graphs can be hard to interpret.

Pair	Statistics	Plots	Observations
Numeric ×	Correlations (only for linear	Scatterplots	Any noticeable relationships, e.g.,
Numeric	relations)		linear, monotonic, non-monotonic?
$\begin{array}{c} {\rm Numeric} \\ \times \\ {\rm Categorical} \end{array}$	Mean/median of numeric variable split by categorical variable	Split boxplots, histograms (stacked or dodged)	Any sizable differences in the means/medians among the factor levels?
Categorical × Categorical	frequency	Bar charts (stacked, dodged, or filled)	Any sizable differences in the class proportions among different factor levels?

> Stacked, dodged, vs. filled bar charts:

The	best	one	for	showing	the the	variat	ion (of pr	oporti	ons
of a	cate	gorio	cal	variable	acros	s the	leve	els o	fanot	her
cate	gorica	al var	iab	le:						

Filled bar chart.

Lose information about the no. of (Downside: observations in each level of the variable in x aesthetic.)

 \square The best one for showing the variation of proportions of a categorical variable within each level of another categorical variable:

Dodged bar chart.

(Reason: Proportions within each level are aligned and put side by side on a common baseline.)

• Common data issues for numeric variables:

Issue 1: Highly correlated predictors

Problems	Difficult to separate out the effects of individual predictors on the target variable
	> For GLMs, coefficients become widely varying in sign and magnitude, and difficult to interpret.
	> For decision trees, strong collinearity can adversely skew variable importance scores.
Possible	$\triangleright \underline{\text{Drop}}$ one of the strongly correlated predictors.
Solutions	□ Use PCA to compress the correlated predictors into a few representative PCs.

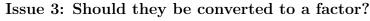
Issue 2: Skewness (esp. right skewness due to outliers)

	terrioss (esp. 11gin sile viness due to oddiess)		
Problems	Extreme values:		
	\triangleright Exert a disproportionate effect on model fit		
	Distort visualizations (e.g., axes of a plot expanded inordinately to take care of outliers)		
Possible Solutions	Remove outliers if there is a strong rationale, e.g., they are recording errors, they make up a tiny part of the data.		
	▶ Apply transformations to reduce right skewness:		
	□ Log transformation $\ln x = \log x$ (works only for <u>strictly</u> +ve variables; remedy: add a small positive number to each value of the variable if there are zero or -ve values)		
	□ Square root transformation √× (works for non-negative variables)		

Exam PA Review Sheet (Last updated 01/17/2025)

G

	<u> </u>
Important	"Yes" if
considerations	Variable has a rather small no. of distinct values, e.g., quarter of the year (1 to 4).
	Variable values are merely numeric <u>labels</u> (no sense of numeric order), e.g., group no.
	\triangleright Variable has a <u>complex relationship</u> with target variable \Rightarrow factor conversion gives models (esp. GLMs) more flexibility to



capture the relationship.

Issue 3: Should they be converted to a factor? (Cont.)

Important considerations

"No" if...

- Variable has a large no. of distinct values, e.g., hour of the day, with 24 values.
 (Reason: Would cause a high dimension and overfitting if converted into a factor.)
- Variable values have a sense of <u>numeric</u> order possibly useful for predicting the target variable.
- Variable has a simple monotonic relationship with the target
 ⇒ its effect can be effectively captured by treating it as a numeric variable.
- > Future observations will have new variable values, e.g., calendar year.

• Common data issue for categorical predictors: Sparse levels

- ▷ Problem with high dimensionality/granularity: Sparse factor levels reduce robustness of models and may cause overfitting.
- ➤ A solution: Combine sparse levels with more populous levels where the target variable behaves similarly to form more representative and interpretable groups.
- ▷ Trade-off: To strike a balance 🍑 between:
 - \square Ensuring each level has a sufficient no. of observations
 - ☐ Preserving the differences in the behavior of the target variable among different factor levels for prediction

➤ *Tip:* Knowledge of the meaning of the variables is often useful when making combinations, e.g., regrouping hour of day as "morning," "afternoon," and "evening."

(Try to use common sense and check the data dictionary!)

• Interaction:

- ▶ Definition: Relationship between a predictor and the target variable depends on the value/level of another predictor.
 (Tin: Good to include the definition in your response)
 - (*Tip:* Good to include the definition in your response whenever an exam subtask tests interaction!)
- *□* Graphical displays to detect interactions:

Predictor Combination	Numeric Target	Categorical Target		
Numeric × Categorical	Scatterplot colored by categorical predictor	Boxplot for numeric predictor split by target and faceted by categorical predictor		
Categorical × Categorical	split by one predictor filled			
Numeric × Numeric	Bin one of the predictors (i.e., cut it into several ranges), and consider a numeric × categorical pair.			

- \triangleright Interaction vs. correlation: Literally similar, but fundamentally different
 - \square Interaction: Concerns a <u>3-way</u> relationship (1 target variable and 2 predictors)
 - ☐ Correlation: Concerns the (linear) relationship between two numeric predictors only

7

Exam PA Review Sheet (Last updated 01/17/2025)

Model Construction and Evaluation

Training/test set split

• How does it work?

Before fitting models, split the data into the training set (approx. 70-80%) and the test set (approx. 20-30%).

Models are fitted to

Training set

Prediction performance is evaluated on •

Test set

Test set observations must be truly unseen to the trained model.

• Why do the split?

- ▶ Model performance on the training set tends to be overly optimistic and favor complex models.
- > Test set provides a more objective ground for assessing the performance of models on new, unseen data.
- > Split replicates the way the models will be used in practice.

• Trade-off about the sizes of the two sets:

Larger training set \Rightarrow { Training is more robust Evaluation on test set is less reliable

• How to do the split?

- \triangleright By stratified sampling w.r.t. the target variable \Rightarrow produce representative training and test sets.
- \triangleright Split based on a time variable, e.g., year \Rightarrow to evaluate how well a model extrapolates past time trends to future, unseen years.

Common performance metrics

• General

0-1 loss

- *Regression vs. classification problems:*
 - \square **Regression:** When the target is numeric
 - \square *Classification:* When the target is categorical (**Note:** The predictors can be numeric or categorical. **A**)

Exam PA Review Sheet (Last updated 01/17/2025)

ACTEX Learning

- ▶ What do metrics computed on training and test sets measure:
 - ☐ *Training:* Goodness of fit to training data
 - ☐ **Test**: Prediction performance on new, unseen data
- ▶ Loss function: Most performance metrics use a loss function to capture the discrepancy between the actual and predicted values for each observation of the target variable numerically. Examples:

Loss Function Metric (the lower the value, the better) MSE = $\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ or RMSE = $\sqrt{\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}$ Square loss Absolute loss $MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$ (Note: Absolute function places much less relative weight on the large errors and reduces the impact of outliers on the fitted model.) Classification error rate $= \frac{1}{n} \sum_{i=1}^{n} 1_{\{y_i \neq \hat{y}_i\}}$

- Additional metrics for (binary) classification problems:
 - *Classification rule:*

$$\begin{array}{ccc} \text{Predicted} & & \text{Predicted} \\ \text{probability for "+"} & > \text{cutoff} & \Leftrightarrow & \begin{array}{c} \text{Predicted} \\ \text{class} \end{array} = \text{"+"} \end{array}$$

	Reference (= Actual)		
Prediction	_	+	
_	TN	FN	
+	FP	TP	

$$\square \ \, \frac{\textbf{Accuracy}}{n} = \frac{\text{TN} + \text{TP}}{n} = \begin{array}{c} \text{proportion of} \\ \text{correctly classified obs.} \end{array}$$

$$\begin{pmatrix} \text{Classification} \\ \text{error rate} \end{pmatrix} = 1 - \text{Accuracy} = \frac{\text{FN} + \text{FP}}{n}$$

$$\square \ \, \frac{\text{TP}}{\text{TP} + \text{FN}} = \frac{\text{proportion of +ve obs.}}{\text{correctly classified as +ve}}$$

$$\square \ \, \frac{\text{Specificity}}{\text{TN} + \text{FP}} = \frac{\text{proportion of -ve obs.}}{\text{correctly classified as -ve}}$$

$$\square \ \, \frac{\text{Precision}}{\text{FP} + \text{TP}} = \frac{\text{proportion of +ve predictions}}{\text{truly belonging to +ve class}}$$

Properties of these metrics:

- \square The <u>higher</u> (closer to 1), the better.
- $\hfill\square$ How certain metrics vary with cutoff:

Cutoff
$$\bullet \Rightarrow \begin{cases} \text{Sensitivity } \bullet \\ \text{Specificity } \bullet \end{cases}$$

May use a cost-benefit analysis to optimize cutoff.

☐ Weighted average relation:

Accuracy =
$$\frac{n_{-}}{n} \times \text{Specificity} + \frac{n_{+}}{n} \times \text{Sensitivity}$$
.

> ROC curves:

- \square Plot sensitivity against specificity for all cutoffs from 0 to 1.
- $\hfill \Box$ All ROC curves share two special points:

(specificity, sensitivity) =
$$\begin{cases} (0,1), & \text{if cutoff} = 0, \\ (1,0), & \text{if cutoff} = 1. \end{cases}$$

Exam PA Review Sheet (Last updated 01/17/2025)

 ∞

- \square A graphical assessment of classifier performance: The closer the curve is to the top-left corner, the better.
- - ☐ Typically ranges between 0.5 (random classifier) and 1 (perfect classifier).
 - \square A quantitative assessment of classifier performance: The higher (closer to 1), the better.

Cross-validation (CV)

• How it works:

For a fixed +ve integer k (e.g., 10), randomly split the training data into k folds of approximately equal size

Train the model on <u>all but one</u> folds and measure performance on left-out fold

Repeat with each fold left out in turn to get k performance values

Average to get overall CV metric

• Common uses of CV:

➤ *Model assessment:* To evaluate a model's test set performance without using any test set.

► Model selection (hyperparameter tuning): To tune
 hyperparameters (= parameters with values supplied in
 advance; not optimized by the model fitting algorithm) by
 picking the values that produce the best CV performance,
 e.g., lowest MSE or highest accuracy.

• Considerations when selecting the best model:

- ▷ (Prediction performance) The model should perform well on test data w.r.t. certain performance metrics.
- *(Interpretability)* The model should be reasonably interpretable, i.e., the predictions should be easily explained in terms of the predictors and lead to specific insights.
- *(Ease of implementation)* The easier for a model to be implemented (computationally, financially, or logistically), the better the model.

Sidebar: Unbalanced data (for binary targets)

- Meaning: One class is much more dominant than the other.
- Problems with unbalanced data:
 - ➤ A classifier implicitly places more weight on the majority class and tries to fit those observations well at the expense of the minority class, which may be the class of interest.
 - A high accuracy can be deceptive.
- Solution 1—Undersampling: Keep all observations from the minority class, but draw <u>fewer</u> observations ("undersample") from the <u>majority</u> class.
 - \triangleright *Drawback:* Less data \Rightarrow training becomes less robust and the classifier becomes more prone to overfitting.

- To tune Solution 2—Oversampling: Keep all observations from the majority class, but draw more observations ("oversample") from the minority class.
 - $\,\triangleright\,$ Drawback: More data \Rightarrow heavier computational burden
 - Caution: Should be done <u>after</u> training/test set split
 (Otherwise, some observations may appear in both training and test sets.)

Exam PA Review Sheet (Last updated 01/17/2025)

9

• Effects of undersampling and oversampling on model results:

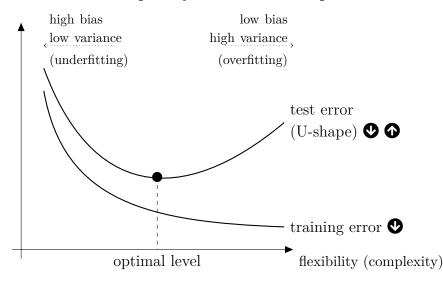
+ve class becomes more prevalent in the balanced data

Predicted probabilities for +ve class will tend to increase

For a fixed cutoff, sensitivity • but specificity •

Controlling model complexity

• How model complexity affects various quantities:



• Underfitting vs. overfitting:

	Underfitting	Overfitting
Training error	Large	Small
Test error	Large	Large
Behavior	Not complex enough to capture the signal effectively ⇒ Poor performance on training + test sets	Too complex and trying too hard to capture the signal and the <u>noise</u> specific to the training data. ⇒ Not generalize well to new, unseen data.

Quantitative framework—Bias-variance trade-off:

▶ Bias-variance decomposition of expected test MSE:

$$\mathbb{E}_{\text{Tr},Y_0} \left[\left(Y_0 - \hat{f}(\mathbf{X}_0) \right)^2 \right]$$

$$= \left[\text{Bias}_{\text{Tr}} (\hat{f}(\mathbf{X}_0)) \right]^2 + \text{Var}_{\text{Tr}} [\hat{f}(\mathbf{X}_0)] + \text{Var}(\varepsilon_0)$$

Quantity	Bias	Variance	
Mathematical definition	Difference between the expected value of prediction and the true signal value	Amount of variability of prediction	
What it measures	Accuracy	Precision	
Behavior	• with complexity	• with complexity	

> Practical implications:

Need to set model complexity to a reasonable level

optimize bias-variance trade-off improve prediction avoid underfitting & overfitting performance

Exam PA Review Sheet (Last updated 01/17/2025)

10

- Feature generation: To generate new features (= derivations from original variables) with the following objectives:
 - > (Predictive power) The features transform the information contained in the original variables into a more useful form \Rightarrow a predictive model can "absorb" the information and capture the signal more effectively.
 - (Interpretability) New features may make a model easier to interpret.
- Sidebar: Dimensionality vs. granularity
 - \triangleright Granularity $\bullet \Rightarrow$ model complexity tends to \bullet
 - > Two main differences between the two concepts:

Concept	Applicability	Comparability	
Dimensionality	Specific to categorical variables	Two categorical variables can always be ordered by dimension.	
Granularity	Applies to both numeric and categorical variables	Not always possible to order two variables by granularity	

1.5 Model Validation

- Aim: To check that the selected model has no obvious deficiencies and the model assumptions are largely satisfied.
- Validation method based on the training set: For a "nice" GLM, the deviance residuals should:
 - (1) (Purely random) Have no systematic patterns (on their own and w.r.t. the predictors).
 - ② (*Homoscedasticity*) Have approximately <u>constant variance</u> upon standardization.
 - (3) (Normality) Be approximately <u>normal</u> (for most target distributions).

For ① & ②: Check a "Residuals vs Fitted" plot.

For ③: Check a Q-Q plot.

- Validation methods based on the test set:
 - ➤ Predicted vs. actual values of target: The two sets of values should be close (can check this quantitatively or graphically).
 - *Benchmark model:* Show that the recommended model outperforms a benchmark model, if one exists (e.g., interceptonly GLM, purely random classifier), on the test set.

1.6 Recommendations for Next Steps

- (Adjust the business problem) Changes in external factors, e.g., market conditions, regulations, may cause initial assumptions to shift ⇒ need to modify the business problem to incorporate the new conditions.
- (Consult with subject matter experts) Seek validation of model results from external subject matter experts.

- (Gather additional data) Enlarge training data with new obs. and/or variables, and retrain the model to improve robustness.
- (Apply new types of models) Try new types of models when new technology or implementation possibilities are available.
- (Refine existing models) Try new combinations or transformations of predictors, alternative hyperparameter values, alternative accuracy measures, etc.
- (Field test proposed model) Implement the recommended model in the exact way it will be used to gain users' confidence.

2 Specific Types of Model

2.1 **GLMs**

• Assumptions: Linear models (LMs) vs. GLMs

	LMs	GLMs
Independence	e Given the predictor values, the target variable are independent	
Target distribution	Given the predictor values, the target variable follows a <u>normal</u> distribution.	Given the predictor values, the target distribution is a member of the linear exponential family.
Mean	The target mean directly equals the linear predictor: $\mu = \eta$ $= \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p.$	A function ("link") of the target mean equals the linear predictor: $g(\mu) = \eta .$ linear predictor
Variance	Constant, regardless of predictor values	Varies with μ and the predictor values

=

Exam PA Review Sheet (Last updated 01/17/2025)

• Two key components of a GLM:

- 1 Target distribution: Choose one (in the linear exponential family) that aligns with the characteristics of the target.
- 2 Link functions: Some important considerations:
 - ➤ Ensure the predictions match the range of values of the target mean.
 - ▷ Ensure ease of interpretation, e.g., log link.
 - (Minor) Canonical links make convergence more likely.

• Common e.g. of target distributions and link functions:

Variable Type	Common Dist.	Common Link
Real-valued with a bell-shaped dist.	Normal (Gaussian)	Identity
Binary $(0/1)$	Binomial	Logit
Count (≥ 0 , integers)	Poisson	Log
Strictly +ve, continuous with right skew	Gamma, inverse Gaussian	Log
≥ 0 , continuous with a large mass at zero	Tweedie	Log

Note: **A**

- ▶ For gamma and inverse Gaussian, the target variable has to be <u>strictly</u> positive. Values of <u>zero</u> are not allowed. (A remedy: Add a small positive amount, e.g., +0.1, to each target value.)
- \triangleright The link function is applied to the target <u>mean</u> μ ; the target variable itself is not transformed, so the log link may still work even for a target distribution with zero values, e.g., Poisson. (See Exercise 4.1.4 (c) in the manual.)

Feature generation

- Methods for handling non-monotonic relations: GLMs, in their basic form, assume that numeric predictors have a monotonic (not necessarily linear) relationship with the target variable.
 - 1 Polynomial regression: Add polynomial terms to the model equation:

$$g(\mu) = \beta_0 + \beta_1 X \underbrace{+ \beta_2 X^2 + \dots + \beta_m X^m}_{\text{polynomial terms}} + \dots$$

- Pros. Can take care of more <u>complex relationships</u> between the target variable and predictors.

 The more polynomial terms included, the more flexible the fit.
- Cons. Coefficients become harder to interpret (all polynomial terms move together).
 - \triangleright Usually no clear choice of m; can be tuned by CV or informed by EDA

Exam PA Review Sheet (Last updated 01/17/2025)

ACTEX Learning

- ② *Binning*: "Bin" the numeric variable and convert it into a categorical variable with levels defined as non-overlapping intervals over the range of the original variable.
 - Pros.
 No definite order among the coefficients of the dummy variables corresponding to different bins ⇒ target mean can vary highly irregularly over the bins.
 - Cons. Usually no clear choice of the no. of bins and the associated boundaries
 - \triangleright Results in a <u>loss of information</u> (exact values of the numeric predictor gone)

- Adding piecewise linear functions: Add features of the Interpretation of coefficients form $(X-c)_+$.
 - Pros. A simple way to allow the relationship between a numeric variable and the target mean to vary over different intervals
 - Cons. Usually no clear choice of the break points

• Handling categorical predictors—Binarization::

▶ How it works: (Automatically done in R behind the scenes.)

Categorical predictor

A collection of dummy (binary) variables indicating one and only one level (= 1 for that level, = 0 otherwise)

Dummy variables serve as predictors in model equation

- *Baseline level*: The level at which all dummy variables equal 0.
 - \square R's default: The alpha-numerically first level
 - \square A good practice: Set it to the most common level.

• Interactions:

Need to "manually" include interaction terms of the product form $X_i X_k$

Coefficient of X_i will vary with the value of X_k

in target mean

• General statements:

- ➤ Coefficient estimates capture the effects (magnitude direction) of features on the target mean.
- > p-values express statistical significance of features; the smaller, the more significant.

Exam PA Review Sheet (Last updated 01/17/2025)

• Specific statements based on log link: Assume all else equal.

> Numeric case: For a unit change in a numeric predictor with estimated coefficient $\hat{\beta}_i$,

$$\frac{\text{multiplicative change}}{\text{in target mean}} = e^{\hat{\beta}_j},$$

$$\text{equivalently}$$

$$\frac{\text{percentage}}{\hat{\beta}_j} = 100(e^{\hat{\beta}_j} - 1)\%.$$

▷ Categorical case: For a non-baseline level of a categorical predictor with estimated coefficient $\hat{\beta}_i$,

$$\hat{\mu}$$
 = $e^{\hat{\beta}_j} \times \hat{\mu}$ @baseline level equivalently

$$\hat{\mu}$$
 is $100(e^{\hat{\beta}_j}-1)\%$ higher than $\hat{\mu}$ @baseline level

Other modeling techniques: Offsets vs. weights

	Offsets	Weights
Form of the target variable	Aggregate (e.g., total # claims in	Average (e.g., average # claims in
	a group of similar policyholders)	a group of similar policyholders)
Do they affect the target mean	target mean directly proportional	Variance is inversely related to exposure:
or variance?		$Var(Y_i) = \frac{\text{(some terms)}}{E_i}$
	$\mu_i = E_i \exp(\cdots).$	Observations with a larger exposure will
		play a more important role in model fitting.

Stepwise selection

• Selection process: <u>Sequentially</u> add/drop features, one at a time, until there is no improvement in the selection criterion. More computationally efficient than <u>best subset selection</u> (= fitting a separate model for each possible combination of features and selecting the "best subset").

	Area	Backward	Forward
1	Which model to start with?	Full model	Intercept-only model
2	Add or drop variables?	Drop	Add
3	Which method tends to produce a simpler model?	Forward	l selection

- Selection criteria based on penalized likelihood:
 - ➤ *Idea:* Prevent overfitting by requiring an included/retained feature to improve model fit by at least a specified amount.
 - > Two common choices:

	Criterion	Definition	Penalty per Parameter
	AIC	-2l + 2(p+1)	2
_	BIC	$-2l + [\ln(n_{\rm tr})](p+1)$	$\ln(n_{ m tr})$

Exam PA Review Sheet (Last updated 01/17/2025)

(In R, -2l is treated as the deviance.)

- > AIC vs. BIC:
 - \Box For both, the lower the value, the better.
 - \square BIC is more conservative and results in simpler models.
- Manual binarization: Convert factor variables to dummy variables manually before running stepwise selection.
 - Pros. To be able to add (resp. drop) <u>individual</u> factor levels that are statistically significant (resp. insignificant) w.r.t. baseline level
 - Cons. ► More steps in the stepAIC() procedure ⇒ heavier computational burden
 - Possibly non-intuitive results, e.g., only few levels of a factor are retained

Regularization

- Idea: Reduce overfitting by shrinking the size of the coefficient estimates, especially those of non-predictive features.
- How it works: To optimize training loglikelihood (equivalently, training deviance) adjusted by a penalty term that reflects the size of the coefficients, i.e., to minimize

deviance + regularization penalty.

The formulation serves to strike a balance between goodness 2.2 Single Decision Trees of fit and model complexity.

• Common forms of penalty term:

Method	Penalty	Characteristic
Lasso		Some coef. may be zero
Ridge regression	$\widehat{\mathbf{R}} = \lambda \sum_{j=1}^{p} \beta_j^2$	None reduced to zero
Elastic net	$\alpha \times (1-\alpha) \times (1-\alpha)$	Some coef. may be zero

• Two hyperparameters:

- (1) λ : Regularization (a.k.a. shrinkage) parameter
 - Controls the amount of regularization:

$$\lambda \bullet \stackrel{\text{more shrinkage}}{\Rightarrow} \text{complexity } \bullet \Rightarrow \begin{cases} \text{bias}^2 \bullet \\ \text{variance } \bullet \end{cases}.$$

- > Feature selection property: For elastic nets with $\alpha > 0$ (lasso, in particular), some coefficient estimates become exactly zero when λ is large enough.
- Typically tuned by CV: Choose λ with the smallest CV error.
- α : Mixing parameter
 - \triangleright Controls the mix between ridge ($\alpha = 0$) and lasso ($\alpha = 1$) (**Note:** Need to remember $\alpha = 0$ is ridge regression and $\alpha = 1$ is lasso. \triangle
 - \triangleright Provided that λ is large enough, increasing α from 0 to 1 makes more coefficient estimates zero.
 - > Cannot be tuned by cv.glmnet(); need to tune manually.

• Basics:

- > Idea: Divide **X** the feature space into a set of non-overlapping regions containing relatively homogeneous observations (w.r.t. target).
- ▷ Deliverable: A set of classification rules based on the values/levels of predictors and represented in the form of a "tree" **\$**

Exam PA Review Sheet (Last updated 01/17/2025)

> Predictions: Observations in the same terminal node share the same predicted mean (for numeric targets) or same predicted class (for categorical targets).

• Recursive binary splitting:

- > Two terms: The algorithm is...
 - ☐ Greedy: At each step, adopt the split that leads to the greatest reduction in impurity (or largest information gain) at that point, instead of looking ahead and selecting a split that results in a better tree in a future step. (Repeat until a stopping criterion is reached.)
 - ☐ **Top-down**: Start from the "top" of the tree, go "down," and sequentially partition the feature space in a series of splits.
- > Node impurity measures:

Tree Type	Name of Measure	Formula
Regression	Residual sum of squares	$\sum_{i \in R_m} (y_i - \hat{y}_{R_m})^2$
Classification	Classification error rate Gini index Entropy	$1 - \max_{1 \le k \le K} \hat{p}_{mk}$ $\sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$ $- \sum_{k=1}^{K} \hat{p}_{mk} \log_2(\hat{p}_{mk})$

-							
\mathbf{P}	, ~	0	n	er	ŧί	00	•
1	1	U	IJ	$e_{\rm I}$	UΙ	$c_{\mathcal{D}}$	١,

- \square The smaller, the purer the observations in the node.
- \square Gini index and entropy are similar numerically.
- ☐ Gini index and entropy are more sensitive to node impurity than classification error rate

(*Reason:* They depend on <u>all</u> \hat{p}_{mk} , not just the max. class proportion.)

• Tree parameters:

Parameter	Name in R	Meaning	Effect
Minimum bucket size	minbucket	Min. # obs. in a terminal node	Higher, tree less complex
Complexity parameter	ср	Min. improvement required for a split to be made (not 100% right)	Higher, tree less complex
Maximum depth	maxdepth	# edges from root node to furthest node	Higher, tree more complex

- ➤ Learning tip: Be sure to know how these parameters limit tree complexity!
- > cp can be tuned by CV within rpart(); minbucket and maxdepth have to be tuned by trial and error.
- Interpretation of trees: Things you can comment on:
 - No. of tree splits
 - \triangleright Split sequence, e.g., start with X_1 , further split the larger bucket by X_2, \ldots

- ➤ Which are the most important predictors (usually those in early splits)?
- ➤ Which terminal nodes have the most observations? Any sparse nodes?
- > (Classification trees) Interesting combinations leading to the +ve event

Exam PA Review Sheet (Last updated 01/17/2025)

16

• Cost-complexity pruning:

- Rationale: To reduce tree complexity by pruning branches from bottom that do not improve goodness of fit by a sufficient amount ⇒ prevent overfitting and ease interpretation.
- > How it works:
- Step 1. Grow a large tree T_0 . (Note: Don't miss this step. \triangle)
- Step 2. Minimize the penalized objective function

relative training error
$$+ c_p \times |T|$$
 (model fit to training data) (tree complexity)

over all subtrees of T_0 , where

$$\frac{\text{training}}{\text{error}} = \begin{cases} \text{RSS}, & \text{for regression,} \\ \# \text{ misclassifications,} & \text{for classification.} \end{cases}$$

- > About the hyperparameter cp:
 - \Box cp \odot \Rightarrow tree less complex (smaller)
 - ☐ Typically tuned by CV: Set cp to the value that minimizes CV error (xerror in cptable).
- ▷ Alternative: One-standard-error (1-SE) rule
 - \square How: Select the <u>smallest</u> tree whose CV error is <u>within 1</u> SE of the minimum CV error.
 - ☐ Rationale: Select a simpler and more <u>interpretable</u> tree with comparable prediction performance. (Occam's razor)

• Do variable transformations affect GLMs and trees?

	GLMs	Trees
Transformations	Yes	Yes
on target	(The transformations alter	(The transformations can alter
variable	the values of the predictors	the values of node impurity
	and target variable that go	measures, e.g., RSS, that define
	into the likelihood function.)	the tree splits.)
Transformations	Yes	Yes, unless the
on predictors	(Same reasoning as above)	transformations are
		monotonic, e.g., log
		(Monotonic transformations
		will not change the $\underline{\mathrm{ranks}}$ of the
		predictor values.)

2.3 Ensemble Trees

Random forests * * * * * * * * * (many trees!)

- Idea:
 - *Variance reduction)* Combine the results of multiple trees fitted to different **bootstrapped training samples** in parallel ⇒ reduce variance of overall predictions.
 - \triangleright (Randomization) Take a <u>random</u> sample of predictors as candidates for each split \Rightarrow <u>reduce correlation</u> between base trees \Rightarrow further reduce variance of overall predictions.
- Combining base predictions to form overall prediction:
 - \triangleright Case 1—Regression trees: By averaging:

$$\hat{f}_{\mathrm{rf}}(\mathbf{x}) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{*b}(\mathbf{x}).$$

▷ Case 2—Classification trees: Two methods:

Probability		Class
base probabilities $\downarrow^{\text{(averaged)}}$	$\stackrel{\text{(converted based on cutoff)}}{\longrightarrow}$	base classes ↓(take "majority vote")
average probability	$\stackrel{\text{(converted based on cutoff)}}{\longrightarrow}$	overall class
(The default is to ta	ke the majority vote.)	

Exam PA Review Sheet (Last updated 01/17/2025)

• Key parameters:

- \triangleright mtry: # features <u>randomly</u> sampled as candidates at each split
 - ☐ mtry ◆ ⇒ greater variance reduction but bias ◆
 - \square Common choice: \sqrt{p} (classification) or p/3 (regression)
 - \Box Typically tuned by CV or out-of-bag estimation
- > ntree: # trees to be grown
 - \square ntree $\bullet \Rightarrow$ greater variance reduction
 - \square Often overfitting does not arise even if set to a large no.
 - \square Set to a relatively small value to save run time

Boosting

- Idea:
 - ➤ In each iteration, fit a tree to the residuals of the preceding tree and subtract a scaled-down version of the current tree's predictions from the residuals to form the new residuals.
 - \triangleright Each tree focuses on observations the <u>previous tree predicted</u> poorly.
 - \triangleright Overall prediction: $\hat{f}(\mathbf{x}) = \sum_{b=1}^{B} \lambda \hat{f}^b(\mathbf{x})$.
- Key parameters:
 - > eta: Learning rate (or shrinkage) parameter

- \square Effects of eta: eta \bullet \Rightarrow algorithm converges faster but \bullet Partial dependence plots: is more prone to overfitting.
- \square Rule of thumb: Set to a relatively small value
- > nrounds: Max. # rounds in the tree construction process
 - \square Effects of nrounds: nrounds \bigcirc \Rightarrow algorithm learns better but is more prone to overfitting.
 - \square Rule of thumb: Set to a relatively large value
 - ☐ Interaction with eta: A smaller eta requires a larger nrounds for sufficient training.

• Random forests vs. boosted trees:

Item	Random Forest	Boosting
Fitting process	In parallel	In <u>series</u> (sequential)
Focus	Variance	Bias
Overfitting	Less vulnerable	More vulnerable
Hyperparameter tuning	Less sensitive	More sensitive

Two interpretational tools for ensemble trees

• Variable importance plots:

Definition of importance scores: The total drop in node impurity (RSS for regression trees and Gini index for classification trees) due to splits over a given predictor, averaged over all base trees:

$$\frac{\text{importance}}{\text{score}} = \frac{1}{B} \times \sum_{\substack{\text{all splits over} \\ \text{that predictor}}} \frac{\text{impurity}}{\text{reduction}}$$

- *Use:* To identify important variables (those with a large score)
- Limitation: The score doesn't tell us how the important variables affect the target.

> Definition of partial dependence: Model prediction obtained after averaging the values/levels of variables not of interest:

$$\operatorname{PD}(x_1) := \frac{1}{n_{\operatorname{tr}}} \sum_{i=1}^{n_{\operatorname{tr}}} \hat{f}(\underbrace{x_1}_{\operatorname{fixed}}, \underbrace{x_{i2}, \dots, x_{ip}}_{\operatorname{averaged}}).$$

Exam PA Review Sheet (Last updated 01/17/2025)

- \triangleright Use: Plot PD(x_1) against various x_1 to show the marginal effect of X_1 on the target variable.
- > Limitations:
 - (1) Assume predictor of interest is independent of other $predictors \Rightarrow some predictions may be based on$ practically unreasonable combinations of values.
 - (2) May miss heterogeneous relationships in the data.

Pros and Cons of Different Models

- Tips for recommending a model: Refer to the business problem (prediction vs. interpretation) and characteristics of data (e.g., any complex, non-monotonic relations?)
- GLMs:
 - $\triangleright Pros: \mathbf{\Theta}$
 - (Target distribution) GLMs excel in accommodating a wide variety of distributions for the target variable.
 - (Interpretability) The model equation shows how the target mean depends on the features; coefficients = interpretable measure of directional effect of features.
 - (3) (Ease of implementation) Simple to implement
 - \triangleright Cons:
 - (1) (Complex relationships) Unable to capture non-monotonic (e.g., polynomial) or non-additive relationships (e.g., interaction), unless additional features are manually incorporated.

(2) (Interpretability) For some link functions (e.g., inverse link), the coefficients may be difficult to interpret.

\bullet Regularized GLMs:

> Pros:

- (1) (Categorical predictors) Via the use of model matrices, binarization of categorical variables is done automatically and each factor level treated as a separate feature to be removed.
- (2) (Hyperparameter tuning) An elastic net can be <u>tuned</u> by CV using the same criterion (e.g., MSE, accuracy) ultimately used to judge the model against unseen test data.
- (3) (Variable selection) For elastic nets with $\alpha>0$, variable selection can be done by making λ large enough.

\triangleright Cons:

- ① (Categorical predictors) Possible to see some <u>non-intuitive</u> or <u>nonsensical</u> results when only a handful of the levels of a categorical predictor are selected.
- (2) (Target distribution) Limited/restricted model forms allowed by glmnet() (Weak point!)

• Single trees:

> Pros:

- ① (Interpretability) If there are not too many buckets, trees are easy to interpret because of the <u>if/then</u> nature of the classification rules and their graphical representation.
- ② (Complex relationships) Trees excel in handling non-monotonic and non-additive relationships without the need to insert extra features manually.

- (3) (Categorical variables) Categorical predictors are automatically handled by separating their levels into two groups without the need for binarization.
- (4) (Variable selection) Variables are automatically selected as part of the model building process. Variables that do not appear in the tree are filtered out and the most important variables show up at the top of the tree.

Exam PA Review Sheet (Last updated 01/17/2025)

earning

\triangleright Cons:

- ① (Overfitting) Strongly dependent on training data (prone to overfitting) \Rightarrow predictions unstable with a high variance \Rightarrow lower user confidence
- ② (Numeric variables) Usually need to split based on a numeric predictor $\underline{\text{repeatedly}}$ to capture its effect effectively \Rightarrow tree becomes large, difficult to interpret.
- ③ (Categorical variables) Tend to favor categorical predictors with many levels (Reason: Too many ways to split ⇒ easy to find a spurious split that looks good just on training data, but doesn't really exist in the signal.)

• Ensemble trees:

 \triangleright Pros: Much more <u>robust</u> and <u>predictive</u> than base trees by combining the results of multiple trees

> Cons:

- ① Opaque ("black box" ②), difficult to interpret (Reason: Many base trees are used, although variable importance or partial dependence plots can help.)

3 Unsupervised Learning

• Supervised vs. unsupervised learning: Two main differences:

	Supervised	Unsupervised
Target	Present	Absent (or ignored if present)
Goal	To make inference or <u>predictions</u> for the target	To extract relationships between variables

- Two reasons why unsupervised learning is often more challenging than supervised learning:
 - (1) (Objectives) Objectives in unsupervised learning are more fuzzy and subjective (no simple goal like prediction).
 - (2) (Harder to assess results) Methods for assessing model quality based on the target variable (e.g., CV) are generally not applicable.

3.1 Principal Components Analysis (PCA)

- Idea:
 - \triangleright To transform a set of numeric variables into a smaller set of representative variables (PCs) \Rightarrow reduce dimension of data
 - \triangleright Especially useful for <u>highly correlated</u> data \Rightarrow a few PCs are enough to capture most information.
- Properties of PCs:
 - □ Linear combinations of the original features:

$$z_{im} = \phi_{1m} x_{i1} + \phi_{2m} x_{i2} + \dots + \phi_{pm} x_{ip}.$$
 with $\phi_{1m}^2 + \phi_{2m}^2 + \dots + \phi_{pm}^2 = 1$ (normalization).

- (Maximal variance direction) PC loadings are chosen to capture as much information in the data (w.r.t. variance) as possible
- ▷ (The line with minimal distance) PC loadings define the line that minimizes the sum of the squared perpendicular distances between each data point and the line.
- ➤ Mutually <u>uncorrelated</u> (different PCs capture different aspects of the data)

Exam PA Review Sheet (Last updated 01/17/2025)

Learning

 ➤ Amount of variance explained decreases with PC order, i.e., PC1 explains the most variance and subsequent PCs explain less and less.

• Two applications of PCA:

- ① Data visualization: Reduce the dimension of the data from p to $M \Rightarrow$ easier to explore and visualize.
- 2) Feature generation: Replace the original variables by PCs to reduce overfitting and improve prediction performance.

• Interpretation of PCs:

- ➤ Signs and magnitudes of PC loadings: What do the PCs represent, e.g., proxy, average, or contrast of which variables? Which variables are more correlated with one another?
- *Sizes of proportions of variance explained* (*PVEs*):

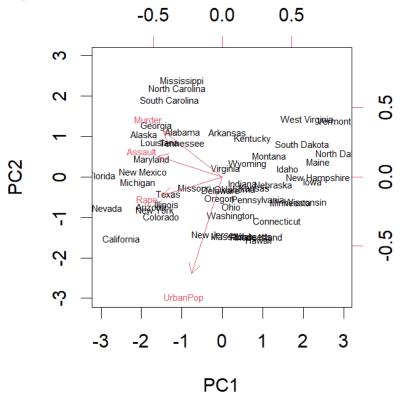
$$PVE_m = \frac{Variance explained by mth PC}{Total variance}.$$

Are the first few PVEs large enough (related to the strong <u>correlations</u> between variables)? If so, the PCs are useful.

- Biplots: A useful tool to visualize PCA output
 - > (Visualizing high-D data) Graph the scores of the first two PCs against each other in a 2D scatterplot.

- ▷ ("bi") Display two kinds of information in the same plot:
 - 1 PC Scores: For observations
 - 2 PC loading vectors (in red): For variables

Example:



- \triangleright PC <u>loadings</u> on top and right axes \Rightarrow deduce meaning of PCs
- ightharpoonup PC scores on bottom and left axes \Rightarrow deduce characteristics of observations (based on meaning of PCs)
- Number of PCs (M) to use:

- \triangleright How to choose M:
 - □ Scree plot: Eyeball the plot and locate the "elbow" (= point at which the PVEs of subsequent PCs have dropped off to a sufficiently low level).
 - \square CV: Treat M as a hyperparameter to be tuned if Y exists.

Exam PA Review Sheet (Last updated 01/17/2025)

earning

• Drawbacks of PCA:

- Not good for <u>non-linearly</u> related variables
 (Reason: PCs rely on linear transformations of variables.)
- ▶ PCA does dimension reduction, but not feature selection.(Reason: PCs are constructed from all original features.)
- ➤ Target variable is ignored. (*Remember:* PC is unsupervised.)

3.2 Cluster Analysis

• Basic idea:

- ➤ To <u>partition</u> observations into a set of non-overlapping subgroups ("clusters") generated with the following two goals:
 - ① (Homogeneity) Observations within each cluster share similar characteristics while observations in different clusters are rather different (well separated).
 - (2) (Interpretability) The characteristics of the clusters are interpretable and meaningful within the context of the business problem.

• Two feature generation methods based on clustering:

- > Cluster groups: As a new factor variable
- ▷ Cluster means: As a new numeric variable

K-means Clustering

• Idea: For a fixed +ve integer K, choose K clusters C_1, \ldots, C_K to minimize the total within-cluster SS, $\sum_{k=1}^{K} W(C_k)$, where

$$W(C_k) = \sum_{i \in C_k} d(\mathbf{x}_i, \bar{\mathbf{x}}_k)^2$$

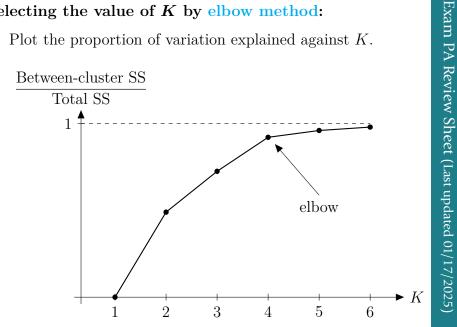
sum of squared Euclidean distances between each observation in C_k and centroid of C_k

- How the algorithm works:
 - \triangleright Step 1 (Initialization): Given K, randomly select K points in the feature space as initial cluster centers.
 - > Step 2 (Iteration): Repeat the following steps until the cluster assignments no longer change:
 - (a) Assign each observation to the cluster with the closest center.
 - (b) Recalculate the K cluster centers (hence "K-means").
- Good practice: Set nstart to a large integer, e.g., ≥ 20 . Reason:

The algorithm produces a local optimum, which depends on the randomly selected initial cluster centers.

Run the algorithm multiple times to improve the chance of finding a better local optimum, if not the global optimum.

- Selecting the value of *K* by elbow method:
 - \triangleright Plot the proportion of variation explained against K.



 Choose the "elbow," beyond which the proportion of variation explained is marginal.

Hierarchical Clustering

- Idea:
 - > *Algorithm*:
 - \square Start with the individual observations, each treated as a separate cluster.
 - ☐ Successively fuse the closest pair of clusters, one at a time.
 - ☐ Stop when all clusters are fused into a single cluster containing all observations.

ACTEX Learning

- > Output: A "hierarchy" of clusters which can be visualized by a dendrogram
- Linkage: To measure the dissimilarity between two clusters, at least one of which has ≥ 2 observations

Linkage	Inter-cluster Dissimilarity
Complete (default)	Maximal pairwise distance
Single	Minimal pairwise distance
Average	Average of all pairwise distances
Centroid	Distance between the two centroids

Properties:

- Complete and average linkage are commonly used. (Reason: They tend to result in more balanced clusters.)
- ▷ Single linkage tends to produce extended, trailing clusters with single observations fused one-at-a-time.
- ▷ Centroid linkage may lead to inversion (some later fusions) occur at a lower height than an earlier fusion).
- Dendrogram: An upside-down tree showing the sequence of fusions and the inter-cluster dissimilarity ("Height" on vertical axis) when each fusion occurs.

Some insights from a dendrogram:

- (Similarities between clusters) Clusters joined towards the bottom of a dendrogram are rather similar to one another, while those fused towards the top are rather far apart.
- Key considerations when choosing the no. of clusters:
 - \square K should be small (e.g., 3 to 7) to ease interpretation.
 - ☐ The resulting clusters have a similar no. of observations Clustering and curse of dimensionality: (balanced).
 - \square The dissimilarity corresponding to the chosen K should not be way higher than the next lower threshold. (: If not, some clusters can be further split to reduce
 - dissimilarity drastically.)

• *K*-means vs. hierarchical clustering:

Item	K-means	Hierarchical
Is randomization needed?	Yes (for initial cluster centers)	No
Is the no. of clusters pre-specified?	$ {\rm Yes} $ $(K {\rm \ needs \ to \ be \ specified})$	No (Specify the height of the dendrogram later)
Are the clusters nested?	No	Yes (a hierarchy of clusters)

Other Practical Issues

- Scaling of variables matters for both PCA and clustering
 - \triangleright Without scaling:

Variables on a large scale will dominate variance and distance calculations

have a disproportionate effect on PC loadings & cluster groups

- *▶* With scaling (generally recommended): All variables are on the same scale and share the same degree of importance.
- Correlation-based distance Focuses on shapes of feature values rather than their exact magnitudes.
- Validating the clusters obtained: Apply the same clustering method to an independent set of observations and checking if those observations exhibit more or less the same set of clusters.
- - > Visualization of the results of cluster analysis becomes problematic in high dimensions $(p \ge 3)$.
- \triangleright As p increases, intuition breaks down and it becomes harder to differentiate between observations that are close and those that are far apart.

ACTEX Learning

Exam PA Review Sheet (Last updated 01/17/2025)